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Abstract

Large Language Models (LLMs) have demonstrated remarkable performance on
various medical question-answering (QA) benchmarks, including standardized
medical exams. However, correct answers alone do not ensure correct logic, and
models may reach accurate conclusions through flawed processes. In this study, we
introduce the MedPAIR (Medical Dataset Comparing Physicians and AI Relevance
Estimation and Question Answering) dataset to evaluate how physician trainees
and LLMs prioritize relevant information when answering QA questions. We
obtain annotations on 1,300 QA pairs from 36 physician trainees, labeling each sen-
tence within the question components for relevance. We compare these relevance
estimates to those for LLMs, and further evaluate the impact of these “relevant”
subsets on downstream task performance for both physician trainees and LLMs. We
find that LLMs are frequently not aligned with the content relevance estimates of
physician trainees. After filtering out physician trainee-labeled irrelevant sentences,
accuracy improves for both the trainees and the LLMs. All LLM and physician
trainee-labeled data are available at: http://medpair.csail.mit.edu/.

1 Introduction

Large language models (LLMs) have shown strong performance across a range of medical tasks,
with systems like GPT-4 and MedPaLM outperforming human averages on standardized medical
examinations [9, 42]. However, many tasks do not reflect the complexity of real-world use cases
[63], and high performance on exam-style datasets may overstate a LLM’s generalizability [39]. In
human-facing settings, it is crucial to understand how models filter and prioritize relevant information
[47].

Estimation of contextual relevance is a critical aspect in many applications. Techniques such as
semantic entropy [23], influence functions [14], context attribution [17, 40], and evidence inference
[21] have been employed to assess which elements within a context hold the most importance. Despite
these efforts, existing relevance estimations are often imprecise and noisy, with models sometimes
producing misleading or overly confident assessments that deviate from human judgment [22]. Even
when estimations appear less noisy, model-generated relevance labels may not concord with those of
human experts. This gap is particularly concerning in human-facing domains where alignment with
expert judgment is necessary [66, 52].
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We focus on the question-answering (QA) in clinical contexts, which reflect how physicians synthesize
patient data to address specific concerns. Existing medical QA datasets have driven progress in
evaluating LLM’s performance on clinically relevant tasks [45, 65, 33, 57]. However, QA benchmarks
and leader boards primarily assess final answers, providing limited visibility into the underlying
rationale [59, 2].

In this work, we curate a Medical Dataset comparing Physician trainees and AI Relevance estimation
and question answering - MedPAIR. We design MedPAIR to understand how physician trainees and
LLMs select relevant information in structured QA. We collect sentence-level relevance labels on
2000 samples from the four QA benchmark datasets from 36 physician trainees. In parallel, we
prompt LLMs to self-report sentence-level relevance [15] and apply ContextCite [18], a context
attribution framework that maps model outputs to the input sentences most responsible for their
generation. This approach allows us to quantify the degree of alignment between human and model
assessments of contextual importance. Using these annotations, we evaluate how sentence-level
relevance, estimated by either LLMs or humans, affects downstream QA performance. We release the
first benchmark and open-source dataset of physician trainee-annotated relevance for patient
case QA tasks, enabling direct comparison with LLM-assigned scores. Our full workflow can be
found in Figure 1.

2 Related Work

2.1 Aligning Human and LLM Estimation

Previous work has shown that limiting input to relevant information can reduce distraction, streamline
evidence integration, and reduce memory requirements [38, 16, 41, 8]. Ensuring Artificial Intelligence
(AI) systems focus on the same input information that physician trainees identify as relevant is
crucial to evaluating which clinical details informed each prediction [58, 37]. This alignment allows
physicians to judge the reliability and explainability of AI suggestions and reduces the risk of mistakes
caused by extraneous or misinterpreted inputs [13]. Demonstrating alignment between LLM-selected
input context and expert judgment is increasingly recognized as fundamental to earning physician
trust in diagnostic AI tools [68, 61, 5].

Effective clinical decision-making often relies on understanding nuanced input information that can
reveal critical insights. In a systematic review, Schuler and colleagues identify 946 distinct contextual
factors that influence clinical decisions, demonstrating the complexity of integrating these elements
into evidence-based reasoning [52]. For AI systems to be trusted in clinical settings, they must reflect
this contextual understanding, prioritizing information in a way that resonates with clinical judgment
[26, 30, 64]. Transparent alignment between AI reasoning and clinician perspectives can reduce
the risks of misleading correlations and enhance trust in AI-based clinical decision support [10, 50],
where alignment improved confidence in AI-assisted diagnoses. Aligning AI models with physicians’
nuanced contextual understanding is essential for their acceptance by the medical establishment and
effective integration into clinical practice.

2.2 Challenges in Comparing LLM and Human Relevance Judgments

Recent work has questioned the reliability of LLMs in consistently judging the relevance of informa-
tion [12]. Although models such as GPT-4 demonstrate high average performance across benchmark
datasets, studies have documented significant variance in self-reported labels when identical prompts
are issued multiple times [18, 25, 24]. This inconsistency is attributed to several factors: prompt
sensitivity [60, 49, 51], stochastic decoding procedures, architectural idiosyncrasies of the model, and
ambiguity in input data. Even in deterministic settings (e.g., temperature zero), LLMs can produce
divergent responses due to underlying randomness or unstable decision boundaries [3]. Empirical
evaluations confirm that model agreement across repeated prompts is rarely perfect, with accuracy
fluctuations of up to 10% depending on task complexity and phrasing [4]. Further highlighting this
gap, recent studies report that between 50% and 90% of LLM-generated medical answers are not
fully supported by the cited references [62]. There are multiple ways to evaluate LLM’s relevance
judgments in the input context, for example semantic entropy using probabilistic approaches to detect
hallucination [23].
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These challenges are particularly pronounced in clinical contexts; widely used medical QA bench-
marks provide limited visibility into how models interpret context. For example, PubMedQA [35]
does not offer detailed annotations identifying which parts of the text are crucial for answering the
question [55]. Similarly, MedQA [34] lacks expert-provided rationales or sentence-level relevance
labels. Other datasets, including MedMCQA [45], MMLU’s medical subsets [31], MetaMedQA [28],
and MEDIQ [39], also prioritize answer correctness.

3 The MedPAIR Dataset

3.1 QA Dataset Setup

To examine the alignment between physician trainees’ and LLMs’ assessments of relevance, we
deliberately concentrate on existing QA pairs grounded in specific patient case scenarios, rather
than general evidence-based questions. This focus is intended to better simulate authentic clinical
contexts. Therefore, we draw on our four datasets Massive Multitask Language Understanding
(MMLU)-precision medicine (272 QAs) [31], Medbullets (298 QAs), JAMA Clinical Challenge
dataset (1,034 QAs) [11], and MedXpertQA (2,450 QAs) [69]. The characteristics for each dataset
are presented in Appendix section A. Each source provides multi-sentence patient case descriptions
paired with questions (4-option or 10-option multiple-choice) and answers, offering a rich context
for relevance annotation. Such patient vignettes are broadly recognized in the medical and social
sciences, including health economics, and physician responses to clinical vignettes have been shown
to predict realized billing behavior in the U.S. Medicare system [20].
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1,300 correctly classified QA pairs with physician‑trainee and LLM sentence‑level labels.

Figure 1: Study Design. We consolidated four QA data sources into two main components: the
patient profile and the query. In the first step, 36 physician trainees and 4 LLMs independently
selected the most appropriate answer. In the second step, physician trainees annotated the relevance of
each sentence within the patient profile, excluding annotations linked to incorrect answers. Majority
voting was used to produce binary relevance labels for physician trainees. Concurrently, we employed
ContextCite with open-source LLMs (Qwen-14B, Qwen-72B, Llama-70B) to generate relevance
scores, while GPT-4o was prompted to replicate the physician annotation process for each sentence
following the same instructions.

To ensure diversity in patient scenarios, we include only those QAs in which the patient profile
contained more than two sentences. Each QA presents a detailed vignette, which is often a long case
description covering patient demographic information, symptoms, exam findings, family history, etc.
From a combined pool of 4,052 QA pairs, we constructed the final dataset by randomly sampling 250
pairs each from MMLU and Medbullets, and 750 pairs each from JAMA and MedXpertQA, resulting
in a curated dataset of 2,000 QA pairs. By pooling these sources, MedPAIR covers a wide spectrum
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of clinical topics and difficulty levels, ensuring that the evaluation is robust across various scenarios
from routine to rare conditions. Figure 1 shows the MedPAIR data curation process.

3.1.1 Expert Data Annotation

We partnered with Centaur Labs2 to employ physician trainees (medical students or higher qualifi-
cations) annotate the QA pairs. Physician trainees were chosen for their familiarity with medical
exam preparation, as these questions are primarily designed for medical students. The demographic
information is presented in the appendix table 9.

A total of 36 physician trainees participated (mean age: 26.4), with 77.3% at the advanced training
level and 81.8% of the labelers had passed the United States Medical Licensing Examination Step
1 Exam. Notably, half of them reported familiarity with using LLMs in clinical contexts, such as
integrating tools like ChatGPT into clinical queries or workflows. On average, each labeler spent an
average of 3.28 minutes (SD 3.41 min) per QA. When participants arrived at the correct answer and
provided sentence-level labeling, they spent on average 3.26 minutes (SD 3.18 min); for incorrect
answers with labeling, the mean time was 3.30 minutes (SD 3.62 min). For each case, physician
trainees first selected the most appropriate answer and then annotated the relevance of every sentence
in the patient profile. A sample physician trainees’ annotation is presented in Figure 1 (orange boxes).
Full study instructions and the pre- and post-survey instruments are provided in the supplementary
material. Data collection occurred between March 6 and May 5, 2025.

Each QA is annotated by at least three physician trainees and verified to contain at least one correct
answer. For each sentence, annotators applied one of three labels: (1) High Relevance: Information
that is critical and must be considered to answer the question correctly. These are the key clinical
clues or data points that strongly point toward the correct diagnosis or decision. (2) Low Relevance:
Information that provides some context or minor clues but is not essential. These details might help
rule out alternatives, yet the question could still be answered correctly without them. (3) Irrelevant:
Information that is not pertinent to determining the correct answer. These can be distractors or
background details included in the vignette that do not impact the outcome in the given context.

This annotation process presents a fine-grained ground truth of relevance for every QA: a trinary label
for each sentence in the context, representing the physician trainee consensus on whether that piece
of information is pertinent to the question. While obtaining these annotations demanded expert effort,
they serve as a gold standard for capturing what physicians deem significant. This level of detailed
expert labeling is largely absent from existing medical QA benchmarks, which typically include only
the question and answer, without explicit identification of supporting case details and their degree of
relevance [11].

3.1.2 LLM Data Annotations

To directly compare physician trainees’ majority-vote annotations with LLM-generated labels for
each QA pair, we annotated the LLM outputs using both ContextCite and a self-reporting prompt.
ContextCite scores approximate the model’s attention distribution across sentences [7], while self-
reported labels capture the model’s own assessment of sentence relevance via prompting.

Then we performed a sentence-level analysis of their respective annotations to examine this divergence
at the sentence level. We examined one closed-source model GPT-4o [44] and three open-source
models: Qwen-14B, Llama 3.1 Instruct 70B [27], and Qwen 2.5-72B [48]. For GPT-4o, we structured
the study the same as physician trainee labeling protocol: we fed the identical instruction prompt
three times and determined each sentence’s relevancy label by majority vote. For the open-source
models, we applied ContextCite to quantify the relevance of each sentence within the QA contexts,
as ContextCite provides a simple, scalable mechanism for tracing portions of a generated response
back to specific input sentences [18]. Each model received the identical prompt used by the physician
labelers to elicit sentence-level relevance judgments. The complete prompts for generating self-
reported labels and ContextCite annotations are provided in Appendix section C.

2https://centaur.ai
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3.2 Problem Formulation

Suppose that a particular question consists of a set of sentences S = S+ ∪ S−, where S+ is the set
of relevant sentences (as labeled by a physician trainee), and S− is the set of irrelevant sentences. Let
Y ∈ {1, 2, ...,K} be the true label. Suppose we have some LLM f : 2S → {1, 2, ...,K}.

In order to probe whether f answers the question using the same information as a human, we compare
f(S) with f(S+), under the assumption that the set f(S+) is sufficient for a human to answer the
question correctly. This gives us the following possible scenarios:

1. f(S) = f(S+) = Y : The model is correct in both cases, suggesting that it relies on the
same information as a human to solve the problem.

2. f(S) ̸= Y, f(S+) ̸= Y : The model is incorrect in both cases, indicating that the problem is
inherently difficult or f has poor capabilities.

3. f(S) = Y, f(S+) ̸= Y : By removing irrelevant sentences, we flip a correct prediction to an
incorrect one. This indicates that the model may have been relying on spurious information
in S− (i.e. information for which a human deems irrelevant) to make its predictions.

4. f(S) ̸= Y, f(S+) = Y : The model improves when irrelevant information is removed,
indicating that S+ contains sufficient information to answer the question as expected, and
the presence of S− introduces noise or distractions.

As case (3) is the most salient, we propose a metric to evaluate f based on the prevalence of samples
which fall into this case. Specifically, we define the SR (Spurious Rate), which is computed as:

SR(f) =
∑N

i=1 1[f(Si) = Yi ∧ f(S+
i ) ̸= Yi]∑N

i=1 1[f(Si) = Yi]
,

where N is the total number of questions. A higher SR indicates greater reliance on spurious or
irrelevant information, while a lower value suggests the model’s predictions are more robust to the
removal of distractors and better aligned with human problem solving.

3.3 Evaluation Set-Up

Patient ProfilePatient Profile

LLM ContextCite-
Annotations

Physician Trainee
Annotations

ContextCite
Score

0.95

0.66

0.85

0.05

0.26

0.34

Majority
Vote

High

High

High

Low

Irrelevant

Low

Majority
Vote

Labeler

Final
Dataset
MedPAIR

Same Budget

For each QA, only select top k sentences

Figure 2: Aligning Physician Trainee Annotations with LLM ContextCite Raw Scores Using an
Identical Input Context Budget.

To compare the LLM-generated ContextCite scores (numerical) with the relevance labels assigned by
the physician trainee (three categories) for each sentence, we established a matching metrics between
ternary labels and ContextCite scores to map the numerical scores to the categorical labels. For each
QA pair, we let k equal the number of sentences marked relevant by majority vote. We then selected
the k sentences with the highest raw ContextCite scores and labeled them “high relevance.” The
remaining sentences were ranked and assigned to “low relevance” or “irrelevant” based on their score
order. This alignment creates a direct mapping between LLM attributions and human judgments,
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allowing us to assess how well the model’s sentence rankings match expert annotations. Figure 2
illustrates this matching process, showing how trainee-provided labels are applied to ContextCite
outputs.

4 Results

4.1 Dataset Characteristics

We received a total of 6,224 QA labels from 36 labelers and only 2,918 labels answer the step 1
classification correctly (Figure 1). There are 1,404 unique QAs with all correct physician trainees
label, with 104 QAs which contain only highly relevant sentences and for which the QA would
therefore be the same after low or irrelevant sentences removal. In the end, we curated 1,300 QAs
which contained at least one removed low-relevance or irrelevant sentence.

The four QAs have different characteristics, as JAMA Clinical Challenge are usually long and have
lots of details, with each sentence containing more words on average. The low relevance and irrelevant
sentences also show the characteristics in perplexity that they are harder to predict as they are more
complex, less structured, or diverge from typical language patterns the model has seen during training.

We compared the final 1300 QAs MedPair on their average of sentences, words per sentence, and
perplexity. Across the four medical QA datasets, the highly relevant sentences are consistently longer
and more uniform in structure, with lower perplexity values and thus greater linguistic predictability.
In contrast, irrelevant or low-relevance sentences were shorter on average, displayed much higher
variability in length, and proved more difficult for the language model to anticipate.

Dataset Total QA Total
Options

Avg
Sentence

Avg Words
Per Sentence Perplexity

High Low/Irr High Low/Irr

MMLU
(Precision Medicine)

193 4 15.9 (7.0) 18.7 (5.2) 12.8 (4.6) 46.4 (56.3) 58.7 (70.4)

JAMA
Clinical Challenge 582 4 26.8 (8.5) 23.1 (5.6) 16.0 (5.4) 51.6 (69.3) 68.2 (92.4)

MedBullets 207 4 21.0 (4.6) 18.1 (4.2) 16.0 (4.3) 46.5 (51.1) 48.3 (65.8)
MedXpertQA 318 10 14.9 (5.6) 21.4 (6.8) 15.6 (4.9) 41.4 (43.8) 52.3 (71.0)

Overall 1300 4/10 21.3 (8.8) 21.2 (6.0) 15.4 (5.1) 48.7 (62.0) 61.0 (82.9)

Table 1: Comparative Analysis of Physician Trainee–Annotated MedPair Dataset Characteristics.
Values in parentheses represent standard deviations.

4.2 Humans and LLMs Disagree on Information Relevance

Data Source Qwen-72B Llama-70B Qwen-14B GPT-4o

CC CC CC SR

MMLU 26.9 (0.2) 70.7 (0.2) 56.9 (0.2) 50.5 (0.3)
JAMA 45.5 (0.2) 62.1 (0.2) 59.1 (0.2) 45.2 (0.3)
MedBullets 49.8 (0.3) 66.6 (0.2) 53.9 (0.2) 45.2 (0.3)
MedXpertQA 51.8 (0.3) 69.3 (0.3) 51.9 (0.2) 52.1 (0.4)

Overall 44.9 (0.3) 65.9 (0.2) 56.2 (0.2) 47.7 (0.3)

Table 2: Relevance Label Concordance (%) with Physician
Trainee Labels. “CC” denotes ContextCite score; “SR” denotes
Self-Reported labels. Standard deviations in parentheses.

By examining cases in which
physician trainees and LLMs pro-
duced differing relevance anno-
tations, MedPAIR reveals funda-
mental differences in how each
identifies and priorities clinically
relevant input context. We quan-
tified the agreement between sen-
tences marked as highly relevant
by physician trainees and those
highlighted by the models, us-
ing ContextCite scores for Qwen-
14B, Llama-70B and Qwen-72B
alongside GPT-4o self reporting.
Although Llama-70B achieved

the highest agreement rate at 65.9 percent, the concordance did not exceed two thirds of all in-
stances. More than thirty percent of sentences identified as "highly relevant" by clinicians were not
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recognized by the models as highly relevant. Such discrepancies in relevance annotation are likely to
affect the QA accuracy. The results are shown in table 2.

A common pattern was overattention to superficial cues. For example, a model might latch onto a
laboratory value that is extreme and assume it must be important, even if it is not relevant to the
question at hand. Conversely, models sometimes missed subtle but crucial cues that humans tagged as
relevant. These findings could be partially due to LLMs occasionally attribute incorrect answers on
misinterpreted or irrelevant context, indicating flawed input context relevance estimates. ContextCite
highlights cases where a model justifies its answer by citing a sentence it wrongly deems supportive,
what researchers term contributive attribution.

4.3 Human Relevance Improves LLM Performance

After removing low-relevance and irrelevant sentences, LLM performance improved when limited
to the physician trainee majority-vote labeled sentences marked as highly relevant. This filtering
effectively constrained the model’s attention to clinically pertinent information, reducing the noise
introduced by less relevant context. Physician labeling instructions explicitly emphasized that
QA tasks could be completed using only these highly relevant sentences, ensuring that models
concentrated on the critical details necessary for accurate decision-making.

* * * *
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Figure 3: Effect of Filtering Context on Final Performance. GPT-4o outperforms all tested
open-source language models. After removing irrelevant and low-relevance sentences, LLaMA 70B
and Qwen 14B demonstrated the most substantial accuracy improvements. In contrast, Qwen 72B
occasionally experiences performance drops following the removal process.

Figure 3 demonstrates that excising sentences deemed low-relevance by physician trainees yields
substantial accuracy gains for most LLMs. Noted that in round 2, physician trainee only annotated
248 QAs (the same sampling ratio for each dataset as 1,300 QAs). Notably, Qwen-72B’s accuracy
increases from 89.3% to 92.2% on the MMLU Precision Medicine subset and from 35.1% to 62.2%
overall, while GPT-4o improves from 95.6% to 96.4% and from 39.3% to 73.0%, respectively, pre-
serving its position as the highest-performing model before and after filtering. Parallel improvements
appear on the JAMA Clinical Challenge, MedBullets, and MedXpertQA datasets, with standard devi-
ations remaining under 0.5 in nearly every case, indicating consistent benefits of relevance pruning.
In contrast, Qwen-14B and Llama-70B exhibit modest declines on the MMLU subset—marked in

Models MMLU JAMA MedBullets MedXpertQA

Llama-70B 1.6 8.9 7.7 6.0
Qwen-72B 2.6 8.6 5.8 4.1
Qwen-14B 9.8 13.9 18.5 8.8
GPT-4o 2.1 6.5 4.8 4.1

Table 3: The SR (%) of removing physician trainee-identified low-relevance and irrelevant
sentences. Each number denotes the proportion of questions that were answered correctly in Round 1
but became incorrect in Round 2 after those sentences were removed.
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red—suggesting that less advanced models may sometimes rely on information classified as irrelevant.
Overall, these findings underscore that expert-guided sentence removal can markedly enhance LLM
performance in clinical QA, even surpassing the unfiltered accuracy of physician trainees (48.3%).

While the performance gains were modest, the results indicate that focusing on high-relevance input
enables the models to avoid distractions from extraneous information that could otherwise skew
their predictions. This targeted approach demonstrates the value of fine-grained relevance curation
in enhancing LLM decision-making reliability in clinical contexts. As shown in Table 3, there
are a subset of QAs (ranging from 1.6% - 18.5%) which LLM depend on sentences annotated as
low-relevance or irrelevant to arrive at the correct answer. Among the models evaluated, Qwen-14B
exhibits the highest SR, while the closed-source GPT-4o exhibits the lowest.

4.4 LLM Relevance Improves LLM Performance

The disagreement between physician trainees and LLMs on the input context relevancy reveals the
differences in highly relevant sentences. To assess how these differences influence model accuracy,
we pruned question contexts according to four criteria: the original unaltered text; sentences retained
by physician trainees; sentences retained by Qwen-72B and Llama-70B via ContextCite scoring;
and sentences self-reported as relevant by GPT-4o. We then re-evaluated GPT-4o on each reduced
context, as it performs the best on the original data.

Datasets MMLU JAMA MedBullets MedXpertQA

Original 95.6 68.5 74.5 16.4

After Physician Trainee
Labeled Low+Irr Removal +0.8 +10.2 +9.6 +24.8

After Qwen-72B
Low+Irr Removal −1.8 +4.0 +2.3 +24.6

After Llama-70B
Low+Irr Removal −2.4 +0.7 +0.1 +22.4

After GPT-4o Self-Reported
Low+Irr Removal +1.8 +10.4 +8.6 +8.8

Table 4: Heatmap of GPT-4o performance gains (%). Red shades denote positive gains; blue
shades denote losses.

In smaller benchmarks such as MMLU, pruning based on non–GPT-4o criteria sometimes led to
modest accuracy declines. By contrast, every pruning strategy yielded dramatic gains on MedX-
pertQA—where shorter average contexts and a larger answer set amplify the benefit of removing
irrelevant material—boosting accuracy by 22.4% to 24.8%. The largest improvement occurred
with physician-curated pruning, while ContextCite-based selection from Qwen-72B and Llama-70B
delivered moderate gains. GPT-4o’s own self-reported labels proved the least reliable, occasionally
degrading performance. These findings underscore the superior value of expert human judgments for
relevance curation in clinical question answering.

4.5 Qualitative Results

A board-certified physician, HJ, reviewed the physician-annotated majority-vote outcomes. Analysis
of high- and low-relevance labels reveals that text marked as highly relevant by the physician trainee
contains more anatomical structures and comparative descriptions (e.g., progressive, increased),
whereas low-relevance text includes more historical information (medication, allergy, travel, social
(smoking, illicit drug), etc.) and negative findings (uncomplicated, noncontributory, etc.)(Table 8).

From the full dataset, 30 QA pairs were randomly selected and Dr. HJ compared original and
edited versions after removing irrelevant sentences, then categorized these removed low relevance or
irrelevant sentences into thematic groups such as 1) Redundant Clinical Details, 2) Negative Result
that is not essential for current chief complaint, 3) Low relevant or Irrelevant Temporal Information,
4) History (Medical, Surgical, Medication, Social) with No/Very Low Clinical Information, etc. The
validation exercise evaluated whether the remaining highly relevant sentences maintained the link to
the correct answer and whether removing low-relevance content affected answer correctness. The
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sample case study is presented in Appendix section D and the validation sheet is available in the
supplementary material.

5 Discussion

Our findings highlight a significant mismatch between LLM and human expert estimated relevance in
the evaluation of clinical vignettes. This resonates with concerns raised in earlier work [6] that LLM
performance can be overestimated if one only looks at accuracy [32]. Such discordance suggests
that accuracy metrics alone may fail to capture how large language models derive answers from
clinical context. Alignment between model-assigned and physician-assigned relevance is essential
for developing clinically deployable AI, where safe and effective integration depends not only on
producing accurate outputs but also on correct interpretation on the input context. Models that
prioritize the same clinically meaningful information as human experts are more likely to support
interpretable and actionable decision-making. Previous work has demonstrated that selectively
pruning input contexts and retaining only the most relevant context can enhance QA performance in
language models [43, 36]. Our experiments extend these findings by showing that context reduction
guided by physician annotations, ContextCite scores from open-source models, or few-shot self-report
prompting of GPT-4o each provides consistent performance gains across four medical QAs.

Additionally, the MedPAIR dataset contributes to understand whether LLM is able to automate the
evaluation process as a judge. While our findings suggest that LLMs can enhance performance in this
role, the substantial improvements observed with domain expert-generated datasets demonstrate the
importance of human involvement in the evaluation process [54, 67]. The human and LLM disagree-
ments on information relevance highlight the need for expert oversight in ensuring accuracy [56].
Although LLMs can provide ContextCite scores and self-report labels to explain the identification
of input context, the quality and consistency of these outputs still require validation from human
experts. This is particularly important in healthcare, where automating prediction and evaluation
with LLMs could have serious consequences due to potential misalignments with human judgment in
input information retrieval [1].

6 Limitation & Future Work

Interpreting LLM’s input relevance scoring using ContextCite scores and self-reported labels may
lack reliability [29, 46]. ContextCite scores do not always accurately capture the relevance of each
sentence in decision-making for question answering, while self-reported labels are often inconsistent
and may not align with actual annotations. It’s critical to understand how LLMs evaluate sentence
relevance within patient profiles and new evaluation metrics or measurement approaches may be
necessary. Given that human interpretations are costly and time-consuming, we are limited to a
small subset of data, which restricts the ability to ensure generalizability within a larger alignment
framework. In addition, while removing irrelevant and low-relevance sentences improved accuracy,
relying solely on human annotations for this task is impractical for real-time clinical scenarios
[19, 53]. Moving forward, we aim to use physician-in-the-loop MedPAIR benchmark to fine-tune
text-based LLMs (e.g., Llama-3 and Mistral), aligning their contextual relevance judgments more
closely with physician reasoning. This enhanced alignment is expected to significantly improve LLM
performance in medical QA tasks by enabling models to prioritize clinically relevant information
effectively.

7 Conclusion

The MedPAIR benchmark establishes a rigorous pre-reasoning evaluation by quantifying sentence-
level alignment between LLM relevance judgments and physician-trainee annotations across a
comprehensive suite of medical QA scenarios. We introduce the notion of relevance pairs, highlighting
which parts of a problem should be central to solving it, and used these maps to diagnose mismatches
in how an AI approaches clinical reasoning. Our experiments with 1,300 annotated QA examples
revealed that, although the LLM can arrive at correct answers, by solely focusing on the physician-
labeled highly relevant input context, LLM performance can be improved. The MedPAIR benchmark
lays the groundwork for developing LLMs whose performance meet the exacting demands of real-
world medical practice.
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Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina
Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter,
Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel
Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson,
David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen,
Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang,
Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan
Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann,
Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi
Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather
Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Hui-
wen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian
Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitschei-
der, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker,
James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang,
Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee,
Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero
Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan
Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga,
Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi,
Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg,
Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry
Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus,
Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang,
Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric
Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan,
Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan,
Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie
Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah
Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk,
Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul
McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter
Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes,

15



Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene,
Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal
Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan,
Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell,
Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit
Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. GPT-4o System Card, October 2024. arXiv:2410.21276 [cs].

[45] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. MedMCQA: A Large-
scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering. In Pro-
ceedings of the Conference on Health, Inference, and Learning, pages 248–260. PMLR, April
2022. ISSN: 2640-3498.

[46] Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM Evaluators Recognize and Favor
Their Own Generations. November 2024.

[47] Wan Beom Park, Seok Hoon Kang, Yoon-Seong Lee, and Sun Jung Myung. Does Objective
Structured Clinical Examinations Score Reflect the Clinical Reasoning Ability of Medical
Students? The American Journal of the Medical Sciences, 350(1):64–67, July 2015.

[48] Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
Technical Report, January 2025. arXiv:2412.15115 [cs].

[49] Amirhossein Razavi, Mina Soltangheis, Negar Arabzadeh, Sara Salamat, Morteza Zihayat, and
Ebrahim Bagheri. Benchmarking Prompt Sensitivity in Large Language Models. In Advances
in Information Retrieval: 47th European Conference on Information Retrieval, ECIR 2025,
Lucca, Italy, April 6–10, 2025, Proceedings, Part III, pages 303–313, Berlin, Heidelberg, April
2025. Springer-Verlag.

[50] Yao Rong, Tobias Leemann, Thai-Trang Nguyen, Lisa Fiedler, Peizhu Qian, Vaibhav Unhelkar,
Tina Seidel, Gjergji Kasneci, and Enkelejda Kasneci. Towards Human-Centered Explainable
AI: A Survey of User Studies for Model Explanations. IEEE Trans. Pattern Anal. Mach. Intell.,
46(4):2104–2122, April 2024.

[51] Thomas Savage, Ashwin Nayak, Robert Gallo, Ekanath Rangan, and Jonathan H. Chen. Di-
agnostic reasoning prompts reveal the potential for large language model interpretability in
medicine. npj Digital Medicine, 7(1):1–7, January 2024. Publisher: Nature Publishing Group.

[52] Katharina Schuler, Ian-C. Jung, Maria Zerlik, Waldemar Hahn, Martin Sedlmayr, and Brita
Sedlmayr. Context factors in clinical decision-making: a scoping review. BMC Medical
Informatics and Decision Making, 25(1):133, March 2025.

[53] Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of Unsupervised
Metrics in Task-Oriented Dialogue for Evaluating Natural Language Generation, June 2017.
arXiv:1706.09799 [cs].

[54] Lin Shi, Chiyu Ma, Wenhua Liang, Xingjian Diao, Weicheng Ma, and Soroush Vosoughi.
Judging the Judges: A Systematic Study of Position Bias in LLM-as-a-Judge, April 2025.
arXiv:2406.07791 [cs].

16



[55] Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
Kevin Clark, Stephen R. Pfohl, Heather Cole-Lewis, Darlene Neal, Qazi Mamunur Rashid,
Mike Schaekermann, Amy Wang, Dev Dash, Jonathan H. Chen, Nigam H. Shah, Sami Lachgar,
Philip Andrew Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Agüera y
Arcas, Nenad Tomašev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle K.
Barral, Dale R. Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthike-
salingam, and Vivek Natarajan. Toward expert-level medical question answering with large
language models. Nature Medicine, 31(3):943–950, March 2025. Publisher: Nature Publishing
Group.

[56] Ian Soboroff. Don’t Use LLMs to Make Relevance Judgments. Information Retrieval Research,
1(1):29–46, March 2025. Number: 1.

[57] Sarvesh Soni, Meghana Gudala, Atieh Pajouhi, and Kirk Roberts. RadQA: A Question Answer-
ing Dataset to Improve Comprehension of Radiology Reports. In Nicoletta Calzolari, Frédéric
Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hi-
toshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages
6250–6259, Marseille, France, June 2022. European Language Resources Association.

[58] Eric Strong, Alicia DiGiammarino, Yingjie Weng, Andre Kumar, Poonam Hosamani, Jason
Hom, and Jonathan H. Chen. Chatbot vs Medical Student Performance on Free-Response
Clinical Reasoning Examinations. JAMA internal medicine, 183(9):1028–1030, September
2023.

[59] Augustin Toma, Patrick R. Lawler, Jimmy Ba, Rahul G. Krishnan, Barry B. Rubin, and
Bo Wang. Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-
Based Knowledge Encoding, August 2023. arXiv:2305.12031 [cs].

[60] Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe You, WeiZhi Liu, Qi Li, and Jian Li.
Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs.
npj Digital Medicine, 7(1):1–9, February 2024. Publisher: Nature Publishing Group.

[61] Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu,
Yi Liu, Hyunjin Cho, Chang-In Choi, Yihan Cao, Hui Ren, Xiang Li, Xiaoxiao Li, and Yuyin
Zhou. MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs,
April 2025. arXiv:2504.00993 [cs].

[62] Kevin Wu, Eric Wu, Kevin Wei, Angela Zhang, Allison Casasola, Teresa Nguyen, Sith Ri-
antawan, Patricia Shi, Daniel Ho, and James Zou. An automated framework for assessing how
well LLMs cite relevant medical references. Nature Communications, 16(1):3615, April 2025.
Publisher: Nature Publishing Group.

[63] Peng Xia, Ze Chen, Juanxi Tian, Yangrui Gong, Ruibo Hou, Yue Xu, Zhenbang Wu, Zhiyuan
Fan, Yiyang Zhou, Kangyu Zhu, Wenhao Zheng, Zhaoyang Wang, Xiao Wang, Xuchao Zhang,
Chetan Bansal, Marc Niethammer, Junzhou Huang, Hongtu Zhu, Yun Li, Jimeng Sun, Zongyuan
Ge, Gang Li, James Zou, and Huaxiu Yao. CARES: A Comprehensive Benchmark of Trust-
worthiness in Medical Vision Language Models. Advances in Neural Information Processing
Systems, 37:140334–140365, December 2024.

[64] Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr Kuleshov, and
Fei Wang. Harnessing Biomedical Literature to Calibrate Clinicians’ Trust in AI Decision
Support Systems. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, CHI ’23, pages 1–14, New York, NY, USA, April 2023. Association for Computing
Machinery.

[65] Deshiwei Zhang, Xiaojuan Xue, Peng Gao, Zhijuan Jin, Menghan Hu, Yue Wu, and Xiayang
Ying. A survey of datasets in medicine for large language models. Intelligence & Robotics,
4(4):457–478, December 2024. Publisher: OAE Publishing Inc.

[66] Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. Mover-
Score: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance.

17



In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[67] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. Advances in Neural Information
Processing Systems, 36:46595–46623, December 2023.

[68] Shuang Zhou, Mingquan Lin, Sirui Ding, Jiashuo Wang, Canyu Chen, Genevieve B. Melton,
James Zou, and Rui Zhang. Explainable differential diagnosis with dual-inference large language
models. npj Health Systems, 2(1):1–9, April 2025. Publisher: Nature Publishing Group.

[69] Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning
Ding, and Bowen Zhou. MedXpertQA: Benchmarking Expert-Level Medical Reasoning and
Understanding, February 2025. arXiv:2501.18362 [cs].

18



A Dataset Explanation

Massive Multitask Language Understanding (MMLU) is a common benchmark which consists
of multiple domains and tasks based on real-world exams [31]. It includes 57 subjects across
STEM, the humanities, the social sciences. Here we only focused on medical related questions
(precision_medicine), which has 272 multiple-choice medical questions.

The JAMA Clinical Challenge dataset includes 1,034 clinical cases sourced from the JAMA
Network Clinical Challenge archive. Each entry summarizes a real and diagnostically complex
clinical scenario, presented in the form of a question. These challenges feature an extended case
vignette followed by a multiple-choice question with four answer options, accompanied by a detailed
discussion explaining both the correct and incorrect responses. The questions span a broad spectrum
of medical topics [11].

Medbullets consists of 298 United States Medical Licensing Examination (USMLE) Step 2 and
Step 3–style questions curated from open-access posts beginning in April 2022. These questions
aim to reflect common clinical scenarios encountered in medical education, with difficulty levels
comparable to Step 2 and 3 exams. Each item includes a brief case description, five answer choices,
and an explanation that clarifies the reasoning behind both correct and incorrect responses. Compared
to JAMA, these cases tend to be shorter and potentially less complex [11].

MedXpertQA consists of 2450 questions for text evaluation. It is a highly challenging and compre-
hensive medical multiple-choice benchmark. MedXpertQA integrates specialty-specific assessments
into medical benchmarking and challenging medical exam questions with real-world clinical informa-
tion into medical multimodal benchmarking [69].

A.1 NLP Analysis

In order to investigate how sentence relevance shifts according to its position in the clinical vignette,
we plotted the labels assigned by physician trainees and those self reported by LLMs (Figure 4 plots
(a), (b)) and LLM ContextCite scores (Figure 4 plot (c)). Our objective was to determine whether
trainees or the model demonstrate systematic attention to particular segments of the patient profile.
All three plots indicate that sentences appearing at the beginning of the text receive the highest
relevance ratings. GPT-4o marks slightly fewer sentences as highly relevant and more as irrelevant
in the central region compared with physician trainees. In contrast, ContextCite scores decline
from approximately 0.33 at the outset to 0.22 by the tenth percentile, then plateau between 0.20
and 0.25 with minimal variance. This flat, low-variance profile diverges sharply from the dynamic
patterns of expert and self-reported labels, suggesting that ContextCite does not capture the nuanced,
position-dependent relevance judgments.
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Figure 4: Sentence Position Analysis. Plot (a) Distribution of physician trainees’ majority-vote
relevance labels by sentence position. Plot (b) Distribution of GPT-4o self-reported relevance labels
by sentence position. Plot (c) ContextCite scores across the context for three open-source models
(Qwen-14B, Llama-70B, Qwen-72B).

B Expert Annotation Dataset Interpretation

We instructed each labeler to annotate every sentence as “high relevance,” “low relevance,” or
“irrelevant.” Depending on question difficulty and the exclusion of annotations from labelers whose
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answer classifications proved incorrect, each item received between one and three valid annotations.
We then assigned numeric scores to those labels: high relevance was scored as 1.0, low relevance as
0.5, and irrelevant as 0.0. For sentences with more than one annotation, we calculated the average
of those scores. If the average exceeded 0.66, we classified the sentence as high relevance; if it fell
between 0.33 and 0.66, we classified it as low relevance; and if it was below 0.33, we classified it as
irrelevant. The specific rules and combinations of relevance labels are displayed in Table D.

Labelers High Relevance
Labels

Low Relevance
Labels Irrelevant Labels

3 Correct Labels

High, High, High
High, High, Low
High, High, Irr

High, Low, Low

Low, Low, Low
High, Low, Irr

High, Irr, Irr
Low, Low, Irr
Low, Irr, Irr
Irr, Irr, Irr

2 Correct Labels High, High
High, Low

High, Irr
Low, Low
Low, Irr

Irr, Irr

1 Correct Labels High Low Irr

* “High” refers to high relevance; “Low” to low relevance; “Irr” to irrelevant.
Table 5: Rules based on majority label agreement across different label landscapes for each sentence-
level analysis.

To structure the evaluation, we designed a framework distinguishing between accurate prediction and
relevance agreement, summarized in the confusion matrix presented in Table 6. We evaluated the
outcomes under both conditions in two ways: (a) Answer correctness: did the model get the question
right or wrong? and (b) Relevance agreement: how well did the model align with the physician
trainee’s annotated relevant components?

We quantified alignment using metrics such as the proportion of the model’s referenced high/low
relevance components and the frequency of referencing irrelevant components, comparing these
against the ground-truth annotations. Our goal is to ensure that relevance agreement aligns with both
accurate prediction (true positives (TP) in Table 6) and correct relevance, using clinicians’ relevance
labels with correct predictions as ground truth. We seek to minimize cases where the model achieves
correct predictions but relies on incorrect relevance (false positives (FP) in Table 6).

Relevance Agreement
Yes No

Accurate Prediction Yes TP (Relevance✓, Accurate ✓) FP (Relevance✗, Accurate ✓)
No FN (Relevance✓, Accurate ✗) TN (Relevance✗, Accurate ✗)

Table 6: Confusion matrix of prediction accuracy and relevance agreement. In our MedPAIR
benchmark, we evaluated relevance labels from both physician trainee labelers and LLMs.

C Labeler Instructions & Prompts

We asked each physician trainee labeler to follow this instruction during sentence-level relevance
labeling:

You are given a list of sentences from a clinical vignette and a multiple-choice clinical question.
Your task is twofold: (1) Select the most appropriate answer from the given options. (2) Label each
sentence as either [High Relevance], [Low Relevance], or [Irrelevant], based on its contribution to
answering the question.
DEFINITIONS:

[HIGH RELEVANCE]: Give this label to sentences that directly answer the medical question with specific
and essential information. If this part is missing or altered, the answer would be significantly affected.
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• A sentence that explicitly states the primary cause or contributing factor (history, demographics,
etc.) is considered high relevance.

• If the question is asking about the treatment plan, a sentence that clearly states the specific
indication of the proposed treatment plan is considered high relevance.

• If the question is asking about the diagnosis, a sentence that includes diagnostic criteria for the
condition is considered high relevance.

• If the question is asking about test results, a sentence that clearly reports the key findings that
confirm or support the test outcome is considered high relevance.

[LOW RELEVANCE]: Give this label to sentences that offer background or contextually related or
background information that may be helpful but do not directly answer the question.

• A sentence that includes a secondary or potential contributing factor (symptoms, history, etc.) of
the main patient condition is considered low relevance.

• A negative history that contradicts or does not support the diagnosis (e.g., no prior epistaxis
when the diagnosis is epistaxis) is considered low relevance.

• If the question is asking about the treatment plan, a sentence that includes the intervention or
therapy that is not central to the gold standard treatment is considered low relevance.

• If the question is asking about the treatment plan, a sentence that describes the outcome of a
previous intervention for the current chief complaint or diagnosis—particularly one that was
unsuccessful—is considered low relevance.

• If the question is asking about the treatment plan, a sentence that does not indicate the treatment
itself but instead rules out other conditions that would require different treatments is considered
low relevance.

• If the question is asking about the diagnosis, a sentence that includes criteria that could rule out
the current diagnosis (that provides differential diagnosis of the patient condition) is considered
low relevance.

• If the question is asking about test results, a sentence that reports findings that correlate with
or commonly co-occur with the expected result—but are not definitive—is considered low
relevance.

[IRRELEVANT]: Give this label to sentences that do not fall under high or low relevance, or that seem
completely unrelated or unhelpful to answering the question. Irrelevant sentences wouldn’t affect anyone
answering this QA even if this is removed.

• Sentence that adds no additional information on solving question and doesn’t help in differen-
tially diagnosing the condition

• General findings, not specific to the diagnosis or management decision.

Focus on identifying the information that directly contributes to answering the question. This task involves
only text and does not include any images. If the text refers to figures or mentions ‘from the image,’ focus
only on the information presented in the text. Please consider the following clinical question and answer
options when labeling each sentence. Then, label each sentence.

To ensure both physician labelers and the LLM received identical instructions, we used the same
prompt when eliciting self-reported sentence-level relevance annotations.

We also asked LLMs to output the answer while compiling the ContextCite score for each sentence.

You are a clinical reasoning assistant. You will receive a patient case summary and a multiple-choice
question.
Read the question and state your answer.
Patient Context: [patient profile text]
Question and Options: [question and options]

Please select the single most appropriate answer. Respond only in the following format:
Answer: <LETTER>
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Figure 5: Centaur Labs Labeling Interface. The physician trainee labelers first answer the
classification question, then provide high relevance, low relevant, and not relevant labels to each
sentence.

MMLU
Precision Medicine

(193 QAs)

JAMA
Clinical Challenge

(582 QAs)

Med Bullets
(207 QAs)

MedXpertQA
(318 QAs)

Overall
(1,300 QAs)

Before After Before After Before After Before After Before After

Physician
Trainees 84.2 (0.4)

[31 QAs]
89.3 (0.2)

55.2 (0.5)
[93 QAs]
64.5 (0.2)

65.8 (0.5)
[31 QAs]
76.4 (0.2)

23.5 (0.4)
[93 QAs]
59.5 (0.2)

48.3 (0.5)
[248 QAs]
67.2 (0.2)

Qwen-14B 69.8 (0.5) 66.3 (0.5) 51.4 (0.5) 52.8 (0.5) 40.9 (0.5) 44.2 (0.5) 18.9 (0.4) 21.1 (0.4) 45.0 (0.5) 45.7 (0.5)

LLaMA-70B 77.9 (0.42) 92.2 (0.3) 48.1 (0.5) 66.8 (0.47) 48.7 (0.5) 69.6 (0.5) 14.9 (0.4) 21.4 (0.4) 30.0 (0.5) 62.2 (0.5)

Qwen-72B 89.3 (0.3) 92.2 (0.3) 57.9 (0.5) 67.9 (0.5) 62.4 (0.49) 67.6 (0.5) 16.2 (0.4) 27.0 (0.4) 35.1 (0.5) 61.5 (0.5)

GPT-4o 95.6 (0.2) 96.4 (0.2) 68.5 (0.5) 78.7 (0.4) 74.5 (0.44) 84.1 (0.4) 16.4 (0.4) 41.2 (0.5) 39.3 (0.3) 73.0 (0.2)

Table 7: Comparison of accuracy (%) across datasets before and after removing sentences that
physician trainees labeled as low relevance or irrelevant. Values in parentheses represent the
corresponding standard deviations. Bold denotes the best performance across all physician trainee
labelers and LLMs. Red highlighting denotes a drop relative to the baseline.

D Sample QA Case Study

Example of QA Data

Patient Profile:
1. A 29-year-old female presents with low back pain of five days’ duration.

2. Her new job involves walking several miles daily across a large facility.

3. The pain is localized without radiation; no traumatic history.

4. Medications: only oral contraceptives.

Question: What is the most likely diagnosis?

Options:
A. bilateral sacral extension

B. bilateral sacral flexion

C. sacral base posterior

D. right-on-right sacral torsion

E. sacral base anterior
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F. right-on-left sacral torsion

G. unilateral sacral flexion on the right

H. left-on-left sacral torsion

I. left-on-right sacral torsion

J. unilateral sacral extension on the left

Correct Answer: (D) right-on-right sacral torsion.

Sentence # Physician Labels GPT4o Self-Reported Labels Llama70B ContextCite Labels

1 High High High
2 Low Low High
3 Low High High
4 Irr Irr Low

In this case study, we observe notable disagreement in informativeness assessments across sentence 2
and sentence 3 among physicians, GPT-4o, and LLaMA-70B ContextCite. Sentence 2 (“Her new job
involves walking several miles daily across a large facility”) was labeled as Low by both physicians
and GPT-4o, yet High by LLaMA-70B ContextCite. This sentence describes the patient’s lifestyle,
specifically her physical activity level related to her job. This information is of limited relevance

Dataset Readability Top Keywords Frequency
High Low/Irr High Low/Irr

MMLU
(Precision
Medicine)

62.0 (15.3) 67.4 (26.3)

days, emergency,
department, shortness

leukocyte, urine,
previously

unremarkable,
currently, smoke, controlled,

illicit, bmi, illness,
oral, kgm, weighs

JAMA
Clinical
Challenge

34.5 (15.3) 40.1 (18.3)

foveal,
hyperreflective,

spots, girl,
progressively, hypopyon,

cytoplasm, punctate,
ventricular, man

swab, travel, procedures,
order, allergic,

noncontributory, pertinent,
digital, empirically,

animals

MedBullets 67.0 (12.2) 71.9 (16.4)

extremity, increased,
meq/L, developed,

flexion, bright,
right, lateral,

poor, progressively

metformin, sexually,
active, clear, medications,

uncomplicated, known,
cervical, nonfocal, albuterol

MedXpertQA 49.8 (16.0) 54.9 (21.5)

progressive, severe,
levels, low, urea, spine,

nitrogen, labor,
iliac, mmoll

trauma, allergies,
appropriately, murmurs,

vitamin, beers,
personal, resuscitation,

ordered, taking

Overall 47.5 (19.9) 52.9 (23.9)

spots, foveal,
hyperreflective, progressive,

hypopyon, watery, cytoplasm,
punctate, particularly, wrist

organomegaly,
smoke, walks,

comfortable, noncontributory,
personal, nonfocal,

antihypertensive, weekends, case

Table 8: Comparison of dataset characteristics focusing on Readability and Top Keywords
Frequency. Values in parentheses represent standard deviations. The readability is calculated through
Flesch Reading Ease score, which typically ranges from 0 to 100, where a higher score indicates that
the text is easier to read, and a lower score suggests the text is more difficult. We highlighted each
clinical term using different colors based on the type of information it conveys: symptoms, severity,
description on findings, demographics / history, medicine, medical test, anatomical structure/term,
negative findings or suggestive of good patient status, timeline, comparative.
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to sacral torsion. While one cannot entirely rule out its contribution—since prolonged walking
with an asymmetric posture could potentially predispose a patient to sacral dysfunction—it is not
a direct cause or a diagnostically decisive factor. As such, it offers minimal value in determining
the correct answer to this question. LLaMA-70B may have overemphasized contextual lifestyle
clues, interpreting the exertion from walking as highly indicative of a mechanical sacral dysfunction,
whereas clinicians likely viewed it as a nonspecific background factor without clear diagnostic utility.

The sentence 3 (“The pain is localized without radiation; no traumatic history”) received a Low label
from physicians but High from GPT-4o and LLaMA-70B. This discrepancy may reflect differing
heuristics: while clinicians might not prioritize localization and absence of trauma due to their
non-specificity or commonality in musculoskeletal complaints, models may have heuristically linked
"localized pain without radiation" to mechanical causes, interpreting it as informative. These examples
illustrate how LLMs may misattribute diagnostic weight to surface-level patterns.
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Age Gender Year of
med school?

USMLE
Step 1
passed?

Medical school

Familiarity with
clinical challenges?
(i.e. JAMA
Clinical Challenge,
NEJM Image
Challenge, NEJM
Resident 360.)

If you are familiar
with any of the
clinical challenges, how
regularly
do you follow these
challenges?

Familiarity with
MedBullets

How often do you
follow clinical challenges
such as JAMA/NEJM
Challenge?

Familiarity with LLMs
in healthcare

Percentage (%)
LLM Clinical
deployment
readiness percentage

N/A Female M3 No Case Western Some familiarity Not at all High familiarity Not at all High familiarity 30

28 Male G3
(MD/PhD) Yes UC San Diego Some familiarity Not at all Not familiar N/A High familiarity 30

24 Male M3 Yes Columbia VP&S Not familiar N/A Not familiar N/A High familiarity 20

N/A Male M2 Yes NYU Grossman School
of Medicine Some familiarity Not at all Not familiar Not at all Some familiarity 70

25 Male M3 Yes UNC School of Medicine Not familiar N/A Not familiar N/A High familiarity 80
26 Male M4 Yes Dell Medical school Some familiarity Not at all Not familiar Not at all Some familiarity 30
27 Queer M3 Yes KPSOM Some familiarity Not at all Some familiarity Not at all Not familiar N/A
25 Male M4 Yes University of Toledo Some familiarity Not at all High familiarity Not at all Some familiarity 25

N/A Male M2 Yes Harvard High familiarity Occasionally High familiarity Occasionally High familiarity 25

26 Female M4 Yes George Washington
University SOM High familiarity Occasionally High familiarity Occasionally High familiarity 90

27 Female M3 Yes UNC Chapel Hill SOM Not familiar N/A Some familiarity Not at all Some familiarity 30
26 Male M4 Yes UNC Chapel Hill Not familiar Not at all Not familiar Not at all Some familiarity 30
28 Female M3 Yes KPSOM Some familiarity Occasionally High familiarity Occasionally High familiarity 40
25 Male M3 No WUSM Not familiar Not at all Some familiarity Not at all High familiarity 70

26 Female M3 Yes Tufts University
School of Medicine Not familiar Not at all Not familiar Not at all Some familiarity 40

26 Female M3 No Tufts University
School of Medicine Not familiar Not at all Not familiar N/A Not familiar 70

22 Male M1 No Dartmouth Geisel
School of Medicine Some familiarity Not at all High familiarity Occasionally High familiarity 80

25 Male M4 Yes University of Toledo Some familiarity Occasionally Some familiarity Occasionally High familiarity 80
26 Female M4 Yes Medical College of Georgia Not familiar N/A Some familiarity Not at all Some familiarity 45

28 Male M4 Yes Alabama College
of Osteopathic Medicine Some familiarity Occasionally Not familiar Not at all Some familiarity 60

25 Male M3 Yes Warren Alpert Medical School
of Brown University Some familiarity Occasionally High familiarity Not at all Some familiarity 45

32 Male M4 Yes Northwestern Not familiar Not at all Some familiarity Not at all Some familiarity 5

27 Female M4 Yes Alabama College
of Osteopathic Medicine Not familiar N/A Not familiar N/A Some familiarity 50

23 Male M1 No University of Maryland
School of medicine Some familiarity Occasionally Some familiarity Not at all Some familiarity 45

N/A Male M4 Yes Harvard High familiarity Occasionally Not familiar Not at all High familiarity 60
28 Female M4 Yes Dartmouth Not familiar N/A Some familiarity Not at all High familiarity 80

25 Male M3 Yes Indiana University
School of Medicine Some familiarity Not at all Some familiarity Not at all High familiarity 20

29 Male M4 Yes Emory University Some familiarity Occasionally Not familiar Not at all High familiarity 60
23 Male M1 No UC Irvine Not familiar Not at all Not familiar Not at all High familiarity 50

33 Female M4 Yes Touro College of Osteopathic
Medicine Middletown NY Not familiar N/A Not familiar N/A Some familiarity 70

26 Male M4 Yes UNC School of Medicine Some familiarity Occasionally High familiarity Occasionally High familiarity 75

25 Male M1 No University of Texas
Medical Branch Some familiarity Occasionally Not familiar Not at all Some familiarity 50

N/A Male M4 Yes Dell Medical School Not familiar N/A Some familiarity Not at all Not familiar 20
26 Male M3 No Rush Medical College Some familiarity Occasionally Some familiarity Occasionally High familiarity 25

Table 9: Pre-Survey Demographics and Educational Background of Medical Student Participants, Including Self-Reported Familiarity with Clinical
Challenges and LLMs in Healthcare. "N/A" denotes that the labeler chose not to disclose this information. The complete list of pre-survey questions is available in
the supplementary material.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: Yes

Justification: Contributions are clearly enumerated at the end of the introduction, highlight-
ing results and resources that can be found within the manuscript.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: Yes

Justification: A dedicated limitations section can be found at the end of the paper. This
highlights key methodological limitations and explains attempts to address robustness,
particularly with respect to template variation.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: N/A.

Justification: No theoretical results are presented in this piece. Any calculations have
associated equations in-line and are referenced as such.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: Yes

Justification: All code is available in a public repository that enables the running the context
reduction guided by physician annotations and ContextCite scores from open-source LLMs.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: Yes

Justification: A detailed README has been provided within each repository folder describ-
ing the steps required to reproduce or extend the current work.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:Yes

Justification: No training or tuning was conducted.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: Yes.

Justification: The paper reports the statistical significance of the experiments, providing error
bars and appropriate analysis of performance across multiple methods. The use of statistical
measures enhances the credibility of the findings, demonstrating that the improvements in
performance are meaningful and not due to random chance.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: Yes

Justification: We used 2 A100 GPUs for open-source LLM ContextCite Score generation.
Other experiments used 2 CPUs or 1 A6000 GPU.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Yes

Justification: This authors of this study have read, and confirm this study conforms with
every aspect of the Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: Yes

Justification: Our work has no negative socieal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:N/A.

Justification: All models and datasets utilized in this study are already publicly available.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: Yes

Justification: All datasets are open access and comply with the copyright and terms of
service.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: Yes

Justification: Details of the datasets, counts, code, and findings are all available on
Github/Huggingface. We will also provide a blog on this website with a more user-friendly
explanation of the approach and findings. We aim to increase accessibility of the results to a
broader audience.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: Yes

Justification:The detailed instructions are attached in supplementary material. The compen-
sation details are mentioned in the manuscript.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: Yes
Justification: We received an IRB2411001474 exempt for our project titled "Towards Digital
Sustainability in Health Care: Developing Digital Health Products through Data-Driven
User Insights".

28


	Introduction
	Related Work
	Aligning Human and LLM Estimation
	Challenges in Comparing LLM and Human Relevance Judgments

	The MedPAIR Dataset
	QA Dataset Setup
	Expert Data Annotation
	LLM Data Annotations

	Problem Formulation
	Evaluation Set-Up

	Results
	Dataset Characteristics
	Humans and LLMs Disagree on Information Relevance
	Human Relevance Improves LLM Performance
	LLM Relevance Improves LLM Performance
	Qualitative Results

	Discussion
	Limitation & Future Work
	Conclusion
	Acknowledgement
	Dataset Explanation
	NLP Analysis

	Expert Annotation Dataset Interpretation
	Labeler Instructions & Prompts
	Sample QA Case Study

